Wednesday, April 26, 2017

Cortisol and Parkinson's Disease

Research team from Daegu Gyeongbuk Institute Of Science And Technology (DGIST) has performed a high-throughput screening method to identify drug candidates that promote dopaminergic neuronal cell activation by inducing the expression of the parkin protein, the cell protection gene which can inhibit the death of dopaminergic neurons. The results of study are published in Scientific Reports.

Results of the study identified that cortisol induces the expression of the parkin protein and prevents dopaminergic neuronal death by eliminating the accumulation of cell death factors through ubiquitin proteasome system.

Hydrocortisone binds to glucocorticoid receptor which in turn leads to expression of CREB. CREB increases parkin expression via binding to CREB binding motifs of parkin promoter region. Hydrocortisone-stimulated parkin expression results in the downregulation of the toxic parkin substrate AIMP2, which is beneficial for dopaminergic neuronal survival.
In addition, the team has demonstrated the mechanism by which cortisol induces the expression of the parkin protein and CREB (cAMP response element-binding protein) transcriptional regulator through the hormone receptor regulates the expression of the parkin protein through the cell and animal model experiments.

Citation: Ham, Sangwoo, Yun-Il Lee, Minkyung Jo, Hyojung Kim, Hojin Kang, Areum Jo, Gum Hwa Lee, Yun Jeong Mo, Sang Chul Park, Yun Song Lee, Joo-Ho Shin, and Yunjong Lee. "Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson’s disease model." Scientific Reports 7, no. 1 (2017).
doi:10.1038/s41598-017-00614-w.
Adapted from press release by Daegu Gyeongbuk Institute Of Science And Technology.

Popular Posts